
OpenArm Agent Configuration

1. OpenArm Programmatic Configuration (Dependency Injection, IoC)

OpenArm is best configured programmatically, via an instance of the
OpenArmConfiguration interface. This interface has only one method:
Map getMediatorConfigurations()

You write a class that implements this interface, and pass an instance of this class to the
constructor of OpenArmTransactionSimpleFacade. Typically, we tend to write an
anonymous inner class that implements the OpenArmConfiguration interface, and pass it, in
place, to the constructor.

Implementations must return a Map containing Mediator configurations, where the fully
qualified class name of the Mediator is the key of each entry in the Map. For example:

return new OpenArmConfiguration() {
public Map getMediatorConfigurations() {

final Map result = new HashMap();
result.put("net.m2technologies.open_arm.transport.transaction.snmp.SnmpMediator",

new SnmpMediatorConfiguration("127.0.0.1",
162,
"1.3.6.1.2.1.2.0",
"1.3.6.1.2.1.2.0.0.0.42",
2000,
10000,
true));

result.put("net.m2technologies.open_arm.transport.transaction.logging.LoggingMediator",
new LoggingMediatorConfiguration());

return result;
}

};

This code creates a configuration using both the LoggingMediator and the SnmpMediator,
and configures the SnmpMediator (the LoggingMediator's configuration has no attributes).

Note:
Note the use of a "configuration class" for each Mediator. All of the Mediators delivered with OpenArm conform to this
pattern. Although you're free to solve the problem any way you like with Mediators that you write yourself, you may find this
approach the simplest. The Mediator Configuration classes that accompany each OpenArm Mediator should provide enough of
an example.

Page 1
Copyright © 2005 M2 Technologies All rights reserved.



Note:
Mediators are additive. The example above sets up the agent to use both the logging and the SNMP Mediators -- such a setup,
would, for example, both send traps and log events to log4J.

Note that this style of configuration is significantly more flexible -- you can not only specify
which Mediators to use; you can also immediately configure them. With the older, file based
configuration approach, you can only specify which Mediators to use -- if a given Mediator
requires configuration itself, you must provide for this separately, typically via a further
configuration file, specific to the Mediator. The SnmpTrapMediator can be configured this
way, for example. The drawback to this technique is the same problem one is confronted
with in the real estate business -- location. Where are the configuration files, at runtime?
Where should they be kept? This turns out to be an especially royal pain in the ass when
running within the context of a container of some sort, such as a Servlet container, or a J2EE
application server. The mounting complexity of this approach has led to the (rebirth of the)
idea of "dependency injection", also referred to as "inversion of control". The programmatic
configuration, introduced in v. 0.009, allows us to ride on the coattails of the "dependency
injection" hype sufficiently to sidestep the thorny issues involved in specifying a "home
grown" configuration mechanism (as any OpenArm-specific, file based, configuration
mechanism is and must be, logically).

The assumption here is that you, the application programmer, have some mechanism in
place, somewhere in your application, that loads all relevant configuration data from some
sort of repository, presumably at startup, and that you simply use this data to initialize
OpenArm. Where and/or how you do this is irrelevant -- perhaps you use JNDI inside a J2EE
application server, or perhaps you've rolled your own mechanism. It simply doesn't interest
OpenArm. Give OpenArm an instance of OpenArmConfiguration, containing a Map of the
various Mediator configurations you want to use, and OpenArm is happy.

This approach also seems to fit better with the "OpenArm is a library for use within your
application" philosophy. Libraries don't have external configurations, in this way of thinking
-- applications do. And applications use their knowledge to instantiate their libraries in a
particular way.

We therefore strongly recommend using the programmatic, "dependency injection"
technique for configuring OpenArm -- we will probably be deprecating (and eventually
removing) the file-based mechanism in the near future.

2. OpenArm Agent Configuration File

The configuration file for the OpenArm Agent is very simple: each line of the file must
contain the fully qualified class name (FQN) of a class implementing the TransportMediator

OpenArm Agent Configuration

Page 2
Copyright © 2005 M2 Technologies All rights reserved.



interface. Example:

net.m2technologies.open_arm.transport.transaction.snmp.SnmpMediator
net.m2technologies.open_arm.transport.transaction.logging.LoggingMediator

This would configure the OpenArmAgent to use the SnmpMediator and the
LoggingMediator.

If you write your own Mediator, all you have to do to use it is include its FQN in your
configuration file.

OpenArm Agent Configuration

Page 3
Copyright © 2005 M2 Technologies All rights reserved.


	1 OpenArm Programmatic Configuration (Dependency Injection, IoC)
	2 OpenArm Agent Configuration File

