OpenArm Agent

1. Configuring the OpenArm Agent

There are basically 2 aspects to configuring the agent functionality of OpenArm:

« Write code to instantiate the OpenArm Agent and the ARM Factories
« Configure the agent by providing either a) a configuration file or b) an instance of the
interface OpenArmConfiguration.

1.1. Instantiate the Agent and the ARM Factories
Instantiating and configuring the OpenArmAgent is actually pretty smple. Y ou instantiate an
instance of OpenArmTransactionSimpleFacade, passing the constructor:

« either the fully qualified path of the configuration file
« or aninstance of OpenAr nConf i gurati on

That'sit! Here's an example:

final OpenArniransacti onSi npl eFacade openArm = new OpenAr mlr ansact i
Application");

Typcialy, you will want to instantiate and hold a single instance of this class for your eintire
application.

Later, when you want to instrument a method, you obtain an instance of ArmTransaction
from the Facade like this:

final Armiransaction transacti onMonitor = this.openArm get Armiransa

... where "someM ethodName" will be used as the "name" of the "transaction" that ARM will
be measuring.

Directly instantiating the raft of Factory objects that the ARM standard requiresis a bit more
involved. Basically, it involves the following:

* You get an instance of ArmTransactionFactory from the OpenArmAgent

* You use the ArmTransactionFactory to instantiate an instance of
ArmApplicationDefinition

* You pass the ArmApplicationDefinition to the ArmTransactionFactory to get instances of

Page 1



OpenArm Agent

ArmTransactionDefinition and ArmApplication

Later, when you want to instrument a method, you pass both the ArmApplication and the
ArmTransactionDefinition instances to the ArmTransactionFactory to obtain an instance of
ArmTransaction. You use the ArmTransaction to instrument your "transaction”, whatever
that might mean for your application.

In many cases, you will probably want to define and instantiate any number of
ArmTransactionDefinitions; one for each distinct type of transaction in your application. In
contrast, you will typically only have one instance each of ArmApplication,
ArmApplicationDefinition and ArmTransactionFactory.

Here's an exmaple of how this might look:

private Arnilransacti onFactory armlransacti onFactory;
private ArmApplicationDefinition armApplicationDefinition;
private ArmApplication armApplication;

private Armlransacti onFactory initializeArnilransactionFactory(final String fileNane

final OpenArmAgent openArnmAgent = new OpenAr mAgent (fil eName);
final Armlransacti onFactory factory = openAr mAgent. get Transacti onFactory();
return factory;

}

private void initializeArmApplicationd obal s(final String fil eName) ({
arnifr ansacti onFactory = 1 nitializeArniransactionFactory(fil eNane);

armAppl i cationDefinition = armlransacti onFact ory. newAr mApplicati onDefinition("T
armAppl i cation = armiransacti onFact ory. newAr mAppl i cati on(ar mApplicationDefiniti

public Armlransacti onDefinition get Arnmlransacti onDefinition(final String transactio
final ArmlransactionDefinition transDef = armlransacti onFactory. newAr nilr ansact i

ar mAppl i cati onDefinition,

transacti onNane,

nul |,

armir ansacti onFactory. newArmi D(nul 1)) ;
return transbDef;

public Armlransacti on get Armiransacti onMonitor(final Arniransacti onDefinition trans
final Armlransaction transacti onMonitor = armlransacti onFact ory. newAr nifr ansacti

return transacti onhMonitor;

There are afew things worth mentioning about this sample code.

« Notethat, other than the instance of OpenArmAgent, everything elseistyped asan
instance of one of the standard ARM interfaces. Thus, only the code in the method

Page 2



OpenArm Agent

#initializeArmTransactionFactory is dependent on OpenArm.

» Note that the ArmTransactionFactory, ArmApplicationDefinition, and ArmApplication
are held asinstance variables. Typicaly, you will only have one instance of each of these
objects per application context.

» Note, on the other hand, that there are factory methods provided for obtaining instances
of ArmTransactionDefinition and ArmTransaction -- thisis also typical. The usage
pattern here is to obtain anew ArmTransactionDefinition, and use it to obtain anew
ArmTransaction, often on a per method basis.

» Note also the somewhat sick looking method signatures, where lots of parameters are
actually optional. The ARM interfaces prescribe these method signatures, whether they
make sensein all use cases or not. The jury's still out on this one -- at the moment, we
handle the plethora of "optional” parameters by passing lots of nul | references.
However, it might be prettier to hide this complexity, by adding araft of overloaded
signatures for each of the signatures that ARM prescribes. We'd still have to pass around
alot of nul | references, but we could hide that in the implementation, and keep them
from cluttering up end-user code...

e Finaly, note the use of the variable named t r ansact i onMoni t or . Thisvariableis
typed asan Ar mlr ansact i on, and isthe main object that one works with when
instrumenting a method. The Open Group's literature, and the ARM Spec, refer to this
entity as the transaction -- so why not name the variable smply t r ansact i on ? Well,
because the thing this variable representsis not your transaction -- only you know what
that term means, in the context of your application. The thing that I've chosen to name a
transacti onMoni t or isatool that you use to instrument and watch over your
transaction. So | think t r ansact i onMoni t or isabetter name -- clearer in intent and
meaning. I'll consistently name these things thisway, in all of the code samples.

1.2. Providethe configuration for the OpenArmAgent

Thisis complex enough to deserve its own page ...

Page 3


agent_config_file.html

	1 Configuring the OpenArm Agent
	1.1 Instantiate the Agent and the ARM Factories
	1.2 Provide the configuration for the OpenArmAgent


